skip to main content


Search for: All records

Creators/Authors contains: "Jung, Intae"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a spectroscopic survey of Ly α emitters in the Extended Groth Strip (EGS) field, targeting the regime near the Epoch of Reionization. Using Keck/DEep Imaging Multi-Object Spectrograph, we observed 947 high-z candidates with photometric redshifts from 3 < zphot < 7 and down to an H-band (Hubble Space Telescope/Wide Field Camera 3 F160W) magnitude limit of <27.5. Observations were taken over the course of eight nights, with integration times ranging from 4 to 7.8 h. Our survey secured 137 unique redshifts, 126 of which are Ly α emitters at 2.8 < z < 6.3 with a mean redshift of $\overline{z} = 4.3$. We provide a comprehensive redshift catalogue for our targets, as well as the reduced one- and two-dimensional spectra for each object. These observations will provide an important auxiliary data set for the JWST Directors Discretionary Early Release Science programme the Cosmic Evolution Early Release Science Survey, which recently completed near- and mid-infrared imaging and spectroscopy of galaxies in the EGS field.

     
    more » « less
  2. Abstract

    We analyze a sample of 25 [Nev] (λ3426) emission-line galaxies at 1.4 <z< 2.3 using Hubble Space Telescope/Wide Field Camera 3 G102 and G141 grism observations from the CANDELS LyαEmission at Reionization (CLEAR) survey. [Nev] emission probes extremely energetic photoionization (creation potential of 97.11 eV) and is often attributed to energetic radiation from active galactic nuclei (AGNs), shocks from supernovae, or an otherwise very hard ionizing spectrum from the stellar continuum. In this work, we use [Nev] in conjunction with other rest-frame UV/optical emission lines ([Oii]λλ3726, 3729, [Neiii]λ3869, Hβ, [Oiii]λλ4959, 5007, Hα+[Nii]λλ6548, 6583, [Sii]λλ6716, 6731), deep (2–7 Ms) X-ray observations (from Chandra), and mid-infrared imaging (from Spitzer) to study the origin of this emission and to place constraints on the nature of the ionizing engine. The majority of the [Nev]-detected galaxies have properties consistent with ionization from AGNs. However, for our [Nev]-selected sample, the X-ray luminosities are consistent with local (z≲ 0.1) X-ray-selected Seyferts, but the [Nev] luminosities are more consistent with those fromz∼ 1 X-ray-selected QSOs. The excess [Nev] emission requires either reduced hard X-rays or a ∼0.1 keV excess. We discuss possible origins of the apparent [Nev] excess, which could be related to the “soft (X-ray) excess” observed in some QSOs and Seyferts and/or be a consequence of a complex/anisotropic geometry for the narrow-line region, combined with absorption from a warm, relativistic wind ejected from the accretion disk. We also consider implications for future studies of extreme high-ionization systems in the epoch of reionization (z≳ 6) with the James Webb Space Telescope.

     
    more » « less
  3. Abstract

    We investigate spatially resolved emission-line ratios in a sample of 219 galaxies (0.6 <z< 1.3) detected using the G102 grism on the Hubble Space Telescope Wide Field Camera 3 taken as part of the CANDELS LyαEmission at Reionization survey to measure ionization profiles and search for low-luminosity active galactic nuclei (AGN). We analyze [Oiii] and Hβemission-line maps, enabling us to spatially resolve the [Oiii]/Hβemission-line ratio across the galaxies in the sample. We compare the [Oiii]/Hβratio in galaxy centers and outer annular regions to measure ionization differences and investigate the potential of sources with nuclear ionization to host AGN. We investigate some of the individual galaxies that are candidates to host strong nuclear ionization and find that they often have low stellar mass and are undetected in X-rays, as expected for low-luminosity AGN in low-mass galaxies. We do not find evidence for a significant population of off-nuclear AGN or other clumps of off-nuclear ionization. We model the observed distribution of [Oiii]/Hβspatial profiles and find that most galaxies are consistent with a small or zero difference between their nuclear and off-nuclear line ratios, but 6%–16% of galaxies in the sample are likely to host nuclear [Oiii]/Hβthat is ∼0.5 dex higher than in their outer regions. This study is limited by large uncertainties in most of the measured [Oiii]/Hβspatial profiles; therefore, deeper data, e.g., from deeper HST/WFC3 programs or from JWST/NIRISS, are needed to more reliably measure the spatially resolved emission-line conditions of individual high-redshift galaxies.

     
    more » « less
  4. Abstract

    We report the discovery of four galaxy candidates observed 450–600 Myr after the Big Bang with photometric redshifts betweenz∼ 8.3 and 10.2 measured using James Webb Space Telescope (JWST) NIRCam imaging of the galaxy cluster WHL0137−08 observed in eight filters spanning 0.8–5.0μm, plus nine Hubble Space Telescope filters spanning 0.4–1.7μm. One candidate is gravitationally lensed with a magnification ofμ∼ 8, while the other three are located in a nearby NIRCam module with expected magnifications ofμ≲ 1.1. Using SED fitting, we estimate the stellar masses of these galaxies are typically in the rangelogM/M= 8.3–8.7. All appear young, with mass-weighted ages <240 Myr, low dust contentAV< 0.15 mag, and specific star formation rates sSFR ∼0.25–10 Gyr−1for most. Onez∼ 9 candidate is consistent with an age <5 Myr and an sSFR ∼10 Gyr−1, as inferred from a strong F444W excess, implying [Oiii]+Hβrest-frame equivalent width ∼2000 Å, although an olderz∼ 10 object is also allowed. Anotherz∼ 9 candidate is lensed into an arc 2.″4 long with a magnification ofμ∼ 8. This arc is the most spatially resolved galaxy atz∼ 9 known to date, revealing structures ∼30 pc across. Follow-up spectroscopy of WHL0137−08 with JWST/NIRSpec will be useful to spectroscopically confirm these high-redshift galaxy candidates and to study their physical properties in more detail.

     
    more » « less
  5. Abstract

    During reionization, a fraction of galactic Lyαemission is scattered in the intergalactic medium (IGM) and appears as diffuse light extending megaparsecs from the source. We investigate how to probe the properties of the early galaxies and their surrounding IGM using this scattered light. We create a Monte Carlo algorithm to track individual photons and reproduce several test cases from previous literature. Then, we run our code on the simulated IGM of the CoDaII simulation. We find that the scattered light can leave an observable imprint on the emergent spectrum if collected over several square arcminutes. Scattering can redden the emission by increasing the path lengths of photons, but it can also make the photons bluer by upscattering them according to the peculiar motion of the scatterer. The photons emitted on the far blue side of the resonance appear more extended in both frequency and space compared to those emitted near the resonance. This provides a discriminating feature for the blueward emission, which cannot be constrained from the unscattered light coming directly from the source. The ionization state of the IGM also affects the scattered light spectrum. When the source is in a small Hiiregion, the emission goes through more scatterings in the surrounding Hiregion regardless of the initial frequency and ends up more redshifted and spatially extended. This can result in a weakening of the scattered light toward highzduring reionization. Our results provide a framework for interpreting the scattered light to be measured by high-zintegral-field-unit surveys.

     
    more » « less
  6. Abstract

    We present an overview of the CANDELS LyαEmission At Reionization (CLEAR) survey. CLEAR is a 130 orbit program of the Hubble Space Telescope using the Wide Field Camera 3 (WFC3) IR G102 grism. CLEAR targets 12 pointings divided between the GOODS-N and GOODS-S fields of the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). Combined with existing spectroscopic data from other programs, the full CLEAR data set includes spectroscopic imaging of these fields over 0.8–1.7μm. In this paper, we describe the CLEAR survey, the survey strategy, the data acquisition, reduction, processing, and science products and catalogs released alongside this paper. The catalogs include emission line fluxes and redshifts derived from the combination of the photometry and grism spectroscopy for 6048 galaxies, primarily ranging from 0.2 ≲z≲ 3. We also provide an overview of CLEAR’s science goals and results. In conjunction with this paper we provide links to electronic versions of the data products, including 1D+2D extracted spectra and emission line maps.

     
    more » « less
  7. Abstract We use Paschen- β (Pa β ; 1282 nm) observations from the Hubble Space Telescope G141 grism to study the star formation and dust-attenuation properties of a sample of 29 low-redshift ( z < 0.287) galaxies in the CANDELS Ly α Emission at Reionization survey. We first compare the nebular attenuation from Pa β /H α with the stellar attenuation inferred from the spectral energy distribution, finding that the galaxies in our sample are consistent with an average ratio of the continuum attenuation to the nebular gas of 0.44, but with a large amount of excess scatter beyond the observational uncertainties. Much of this scatter is linked to a large variation between the nebular dust attenuation as measured by (space-based) Pa β to (ground-based) H α to that from (ground-based) H α /H β . This implies there are important differences between attenuation measured from grism-based/wide-aperture Pa β fluxes and the ground-based/slit-measured Balmer decrement. We next compare star formation rates (SFRs) from Pa β to those from dust-corrected UV. We perform a survival analysis to infer a census of Pa β emission implied by both detections and nondetections. We find evidence that galaxies with lower stellar mass have more scatter in their ratio of Pa β to attenuation-corrected UV SFRs. When considering our Pa β detection limits, this observation supports the idea that lower-mass galaxies experience “burstier” star formation histories. Together, these results show that Pa β is a valuable tracer of a galaxy’s SFR, probing different timescales of star formation and potentially revealing star formation that is otherwise missed by UV and optical tracers. 
    more » « less
  8. Abstract We report on the gas-phase metallicity gradients of a sample of 238 star-forming galaxies at 0.6 < z < 2.6, measured through deep near-infrared Hubble Space Telescope slitless spectroscopy. The observations include 12 orbit depth Hubble/WFC3 G102 grism spectra taken as a part of the CANDELS Ly α Emission at Reionization (CLEAR) survey, and archival WFC3 G102+G141 grism spectra overlapping the CLEAR footprint. The majority of galaxies in this sample are consistent with having a zero or slightly positive metallicity gradient ( dZ / dR ≥ 0, i.e., increasing with radius) across the full mass range probed (8.5 < log M * / M ⊙ < 10.5). We measure the intrinsic population scatter of the metallicity gradients, and show that it increases with decreasing stellar mass—consistent with previous reports in the literature, but confirmed here with a much larger sample. To understand the physical mechanisms governing this scatter, we search for correlations between the observed gradient and various stellar population properties at fixed mass. However, we find no evidence for a correlation with the galaxy properties we consider—including star formation rates, sizes, star formation rate surface densities, and star formation rates per gravitational potential energy. We use the observed weakness of these correlations to provide material constraints for predicted intrinsic correlations from theoretical models. 
    more » « less
  9. Abstract

    Using the CoDa II simulation, we study the Lyαtransmissivity of the intergalactic medium (IGM) during reionization. Atz> 6, a typical galaxy without an active galactic nucleus fails to form a proximity zone around itself due to the overdensity of the surrounding IGM. The gravitational infall motion in the IGM makes the resonance absorption extend to the red side of Lyα, suppressing the transmission up to roughly the circular velocity of the galaxy. In some sight lines, an optically thin blob generated by a supernova in a neighboring galaxy results in a peak feature, which can be mistaken for a blue peak. Redward of the resonance absorption, the damping-wing opacity correlates with the global IGM neutral fraction and the UV magnitude of the source galaxy. Brighter galaxies tend to suffer lower opacity because they tend to reside in larger Hiiregions, and the surrounding IGM transmits redder photons, which are less susceptible to attenuation, owing to stronger infall velocity. The Hiiregions are highly nonspherical, causing both sight-line-to-sight-line and galaxy-to-galaxy variation in opacity. Also, self-shielded systems within Hiiregions strongly attenuate the emission for certain sight lines. All these factors add to the transmissivity variation, requiring a large sample size to constrain the average transmission. The variation is largest for fainter galaxies at higher redshift. The 68% range of the transmissivity is similar to or greater than the median for galaxies withMUV≥ −21 atz≥ 7, implying that more than a hundred galaxies would be needed to measure the transmission to 10% accuracy.

     
    more » « less
  10. Abstract

    We present the results from a spectroscopic survey using the MOSFIRE near-infrared spectrograph on the 10 m Keck telescope to search for Lyαemission from candidate galaxies atz∼ 9–10 in four of the CANDELS fields (GOODS-N, EGS, UDS, and COSMOS). We observed 11 target galaxies, detecting Lyαfrom one object in ∼8.1 hr of integration, atz= 8.665 ± 0.001 with an integrated signal-to-noise ratio > 7. This galaxy is in the CANDELS Extended Groth Strip (EGS) field and lies physically close (3.5 physical Mpc [pMpc]) to another confirmed galaxy in this field with Lyαdetected atz= 8.683. The detection of Lyαsuggests the existence of large (∼1 pMpc) ionized bubbles fairly early in the reionization process. We explore the ionizing output needed to create bubbles of this size at this epoch and find that such a bubble requires more than the ionizing power provided by the full expected population of galaxies (by integrating the UV luminosity function down toMUV= −13). The Lyαwe detect would be able to escape the predominantly neutral intergalactic medium at this epoch if our detected galaxy is inhabiting an overdensity, which would be consistent with the photometric overdensity previously identified in this region by Finkelstein et al. This implies that the CANDELS EGS field is hosting an overdensity atz= 8.7 that is powering one or more ionized bubbles, a hypothesis that will be imminently testable with forthcoming James Webb Space Telescope observations in this field.

     
    more » « less